Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3.

نویسندگان

  • Friedrich Ossenbühl
  • Vera Göhre
  • Jörg Meurer
  • Anja Krieger-Liszkay
  • Jean-David Rochaix
  • Lutz A Eichacker
چکیده

Alb3 homologs Oxa1 and YidC have been shown to be required for the integration of newly synthesized proteins into membranes. Here, we show that although Alb3.1p is not required for integration of the plastid-encoded photosystem II core subunit D1 into the thylakoid membrane of Chlamydomonas reinhardtii, the insertion of D1 into functional photosystem II complexes is retarded in the Alb3.1 deletion mutant ac29. Alb3.1p is associated with D1 upon its insertion into the membrane, indicating that Alb3.1p is essential for the efficient assembly of photosystem II. Furthermore, levels of nucleus-encoded light-harvesting proteins are vastly reduced in ac29; however, the remaining antenna systems are still connected to photosystem II reaction centers. Thus, Alb3.1p has a dual function and is required for the accumulation of both nucleus- and plastid-encoded protein subunits in photosynthetic complexes of C. reinhardtii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Albino3 leads to the specific depletion of the light-harvesting system.

The chloroplast Albino3 (Alb3) protein is a chloroplast homolog of the mitochondrial Oxa1p and YidC proteins of Escherichia coli, which are essential components for integrating membrane proteins. In vitro studies in vascular plants have revealed that Alb3 is required for the integration of the light-harvesting complex protein into the thylakoid membrane. Here, we show that the gene affected in ...

متن کامل

Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii

We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was st...

متن کامل

Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii.

Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (P...

متن کامل

A Conserved Rubredoxin Is Necessary for Photosystem II Accumulation in Diverse Oxygenic Photoautotrophs*

In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas re...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2004